Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.043
Filtrar
1.
Sci Rep ; 14(1): 8885, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632301

RESUMO

The use of environmental DNA (eDNA) analysis has demonstrated notable efficacy in detecting the existence of freshwater species, including those that are endangered or uncommon. This application holds significant potential for enhancing environmental monitoring and management efforts. However, the efficacy of eDNA-based detection relies on several factors. In this study, we assessed the impact of rainfall on the detection of eDNA for the Siamese bat catfish (Oreoglanis siamensis). Quantitative polymerase chain reaction (qPCR) analysis indicated that samples from days with average rainfall exceeding 35 mm (classified as heavy and very heavy rain) yielded negative results. While eDNA detection remains feasible on light or moderate rainy days, a noteworthy reduction in eDNA concentration and qPCR-positive likelihood was observed. Analysis across 12 sampling sites established a statistically significant negative relationship (p < 0.001) between eDNA detection and rainfall. Specifically, for each 1 mm increase in rainfall, there was an observed drop in eDNA concentration of 0.19 copies/mL (±0.14). The findings of this study provide definitive evidence that precipitation has a significant impact on the detection of eDNA in Siamese bat catfish. However, in the case of adverse weather conditions occurring on the day of sampling, our research indicates that it is acceptable to continue with the task, as long as the rainfall is not heavy or very heavy. To enhance the effectiveness of an eDNA survey, it is crucial to consider many factors related to climatic conditions. The aforementioned factor holds significant importance not only for the specific species under scrutiny but also for the broader dynamics of the climate.


Assuntos
Quirópteros , DNA Ambiental , Animais , DNA Ambiental/genética , DNA/genética , Quirópteros/genética , Água Doce , Monitoramento Ambiental/métodos
2.
Front Immunol ; 15: 1284056, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440728

RESUMO

Bats are natural host reservoirs and have adapted a unique innate immune system that permits them to host many viruses without exhibiting symptoms. Notably, bat interferon stimulated genes (ISGs) have been shown to play antiviral roles. Interferon induced protein with tetratricopeptide repeats 5 (IFIT5) is a well-characterised ISG in humans with antiviral activities against negative-sense RNA viruses via inhibiting viral transcription. Here, we aim to investigate if Pteropus alecto (pa) IFIT5 (paIFIT5) possess the ability to inhibit negative-sense RNA viruses. Initially, gene syntenic and comparative structural analyses of multiple animals highlighted a high level of similarity between Pteropus alecto and human IFIT5 proteins. Our results showed that paIFIT5 was significantly inducible by viral and dsRNA stimulation. Transient overexpression of paIFIT5 inhibited the replication of vesicular stomatitis virus (VSV). Using minireplicon and transcription reporter assays, we demonstrated the ability of paIFIT5 specifically to inhibit H17N10 polymerase activity. Mechanistically, we noticed that the antiviral potential of paIFIT5 against negative sense RNA viruses was retributed to its interaction with 5'ppp containing RNA. Taken together, these findings highlight the genetic and functional conservation of IFIT5 among mammals.


Assuntos
Quirópteros , Vírus de RNA , Animais , Humanos , Interferons/genética , Quirópteros/genética , Repetições de Tetratricopeptídeos , Antivirais
3.
Curr Biol ; 34(6): 1284-1294.e3, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38447572

RESUMO

Adaptive radiations are bursts in biodiversity that generate new evolutionary lineages and phenotypes. However, because they typically occur over millions of years, it is unclear how their macroevolutionary dynamics vary through time and among groups of organisms. Phyllostomid bats radiated extensively for diverse diets-from insects to vertebrates, fruit, nectar, and blood-and we use their molars as a model system to examine the dynamics of adaptive radiations. Three-dimensional shape analyses of lower molars of Noctilionoidea (Phyllostomidae and close relatives) indicate that different diet groups exhibit distinct morphotypes. Comparative analyses further reveal that phyllostomids are a striking example of a hierarchical radiation; phyllostomids' initial, higher-level diversification involved an "early burst" in molar morphological disparity as lineages invaded new diet-affiliated adaptive zones, followed by subsequent lower-level diversifications within adaptive zones involving less dramatic morphological changes. We posit that strong selective pressures related to initial shifts to derived diets may have freed molars from morpho-functional constraints associated with the ancestral molar morphotype. Then, lineages with derived diets (frugivores and nectarivores) diversified within broad adaptive zones, likely reflecting finer-scale niche partitioning. Importantly, the observed early burst pattern is only evident when examining molar traits that are strongly linked to diet, highlighting the value of ecomorphological traits in comparative studies. Our results support the hypothesis that adaptive radiations are commonly hierarchical and involve different tempos and modes at different phylogenetic levels, with early bursts being more common at higher levels.


Assuntos
Quirópteros , Animais , Filogenia , Quirópteros/genética , Evolução Biológica , Biodiversidade , Fenótipo
4.
BMC Genomics ; 25(1): 279, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493092

RESUMO

BACKGROUND: The majority of bat species have developed remarkable echolocation ability, especially for the laryngeally echolocating bats along with high-frequency hearing. Adaptive evolution has been widely detected for the cochleae in the laryngeally echolocating bats, however, limited understanding for the brain which is the central to echolocation signal processing in the auditory perception system, the laryngeally echolocating bats brain may also undergo adaptive changes. RESULT: In order to uncover the molecular adaptations related with high-frequency hearing in the brain of laryngeally echolocating bats, the genes expressed in the brain of Rhinolophus ferrumequinum (CF bat) and Myotis pilosus (FM bat) were both detected and also compared. A total of 346,891 genes were detected and the signal transduction mechanisms were annotated by the most abundant genes, followed by the transcription. In hence, there were 3,088 DEGs were found between the two bat brains, with 1,426 highly expressed in the brain of R. ferrumequinum, which were significantly enriched in the neuron and neurodevelopmental processes. Moreover, we found a key candidate hearing gene, ADCY1, playing an important role in the R. ferrumequinum brain and undergoing adaptive evolution in CF bats. CONCLUSIONS: Our study provides a new insight to the molecular bases of high-frequency hearing in two laryngeally echolocating bats brain and revealed different nervous system activities during auditory perception in the brain of CF bats.


Assuntos
Quirópteros , Ecolocação , Animais , Quirópteros/genética , Audição/genética , Ecolocação/fisiologia , Encéfalo
5.
Am Nat ; 203(4): E107-E127, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38489775

RESUMO

AbstractUnderstanding and predicting the evolutionary responses of complex morphological traits to selection remains a major challenge in evolutionary biology. Because traits are genetically correlated, selection on a particular trait produces both direct effects on the distribution of that trait and indirect effects on other traits in the population. The correlations between traits can strongly impact evolutionary responses to selection and may thus impose constraints on adaptation. Here, we used museum specimens and comparative quantitative genetic approaches to investigate whether the covariation among cranial traits facilitated or constrained the response to selection during the major dietary transitions in one of the world's most ecologically diverse mammalian families-the phyllostomid bats. We reconstructed the set of net selection gradients that would have acted on each cranial trait during the major transitions to feeding specializations and decomposed the selection responses into their direct and indirect components. We found that for all transitions, most traits capturing craniofacial length evolved toward adaptive directions owing to direct selection. Additionally, we showed instances of dietary transitions in which the complex interaction between the patterns of covariation among traits and the strength and direction of selection either constrained or facilitated evolution. Our work highlights the importance of considering the within-species covariation estimates to quantify evolvability and to disentangle the relative contribution of variational constraints versus selective causes for observed patterns.


Assuntos
Quirópteros , Seleção Genética , Humanos , Animais , Quirópteros/genética , Fenótipo , Folhas de Planta , Evolução Biológica
6.
Front Immunol ; 15: 1329098, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357541

RESUMO

Background: GBPs (guanylate binding proteins), an evolutionary ancient protein family, play a key role in the host's innate immune response against bacterial, parasitic and viral infections. In Humans, seven GBP genes have been described (GBP1-7). Despite the interest these proteins have received over the last years, evolutionary studies have only been performed in primates, Tupaia and rodents. These have shown a pattern of gene gain and loss in each family, indicative of the birth-and-death evolution process. Results: In this study, we analysed the evolution of this gene cluster in several bat species, belonging to the Yangochiroptera and Yinpterochiroptera sub-orders. Detailed analysis shows a conserved synteny and a gene expansion and loss history. Phylogenetic analysis showed that bats have GBPs 1,2 and 4-6. GBP2 has been lost in several bat families, being present only in Hipposideidae and Pteropodidae. GBPs1, 4 and 5 are present mostly as single-copy genes in all families but have suffered duplication events, particularly in Myotis myotis and Eptesicus fuscus. Most interestingly, we demonstrate that GBP6 duplicated in a Chiroptera ancestor species originating two genes, which we named GBP6a and GBP6b, with different subsequent evolutionary histories. GBP6a underwent several duplication events in all families while GBP6b is present as a single copy gene and has been lost in Pteropodidae, Miniopteridae and Desmodus rotundus, a Phyllostomidae. With 14 and 15 GBP genes, Myotis myotis and Eptesicus fuscus stand out as having far more copies than all other studied bat species. Antagonistically, Pteropodidae have the lowest number of GBP genes in bats. Conclusion: Bats are important reservoirs of viruses, many of which have become zoonotic diseases in the last decades. Further functional studies on bats GBPs will help elucidate their function, evolutionary history, and the role of bats as virus reservoirs.


Assuntos
Quirópteros , Viroses , Vírus , Animais , Humanos , Quirópteros/genética , Filogenia , Zoonoses
7.
Science ; 383(6690): eabn3263, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38422184

RESUMO

Vocal production learning ("vocal learning") is a convergently evolved trait in vertebrates. To identify brain genomic elements associated with mammalian vocal learning, we integrated genomic, anatomical, and neurophysiological data from the Egyptian fruit bat (Rousettus aegyptiacus) with analyses of the genomes of 215 placental mammals. First, we identified a set of proteins evolving more slowly in vocal learners. Then, we discovered a vocal motor cortical region in the Egyptian fruit bat, an emergent vocal learner, and leveraged that knowledge to identify active cis-regulatory elements in the motor cortex of vocal learners. Machine learning methods applied to motor cortex open chromatin revealed 50 enhancers robustly associated with vocal learning whose activity tended to be lower in vocal learners. Our research implicates convergent losses of motor cortex regulatory elements in mammalian vocal learning evolution.


Assuntos
Elementos Facilitadores Genéticos , Eutérios , Evolução Molecular , Regulação da Expressão Gênica , Córtex Motor , Neurônios Motores , Proteínas , Vocalização Animal , Animais , Quirópteros/genética , Quirópteros/fisiologia , Vocalização Animal/fisiologia , Córtex Motor/citologia , Córtex Motor/fisiologia , Cromatina/metabolismo , Neurônios Motores/fisiologia , Laringe/fisiologia , Epigênese Genética , Genoma , Proteínas/genética , Proteínas/metabolismo , Sequência de Aminoácidos , Eutérios/genética , Eutérios/fisiologia , Aprendizado de Máquina
8.
FASEB J ; 38(3): e23462, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38318662

RESUMO

Hibernation, a survival strategy in mammals for extreme climates, induces physiological phenomena such as ischemia-reperfusion and metabolic shifts that hold great potential for advancements in modern medicine. Despite this, the molecular mechanisms underpinning hibernation remain largely unclear. This study used RNA-seq and Iso-seq techniques to investigate the changes in liver transcriptome expression of Rhinolophus pusillus during hibernation and active periods, as well as under different microhabitat temperatures. We identified 11 457 differentially expressed genes during hibernation and active periods, of which 395 showed significant differential expression. Genes associated with fatty acid catabolism were significantly upregulated during hibernation, whereas genes related to carbohydrate metabolism and glycogen synthesis were downregulated. Conversely, immune-related genes displayed differential expression patterns: genes tied to innate immunity were significantly upregulated, while those linked to adaptive immunity and inflammatory response were downregulated. The analysis of transcriptomic data obtained from different microhabitat temperatures revealed that R. pusillus exhibited an upregulation of genes associated with lipid metabolism in lower microhabitat temperature. This upregulation facilitated an enhanced utilization rate of triglyceride, ultimately resulting in increased energy provision for the organism. Additionally, R. pusillus upregulated gluconeogenesis-related genes regardless of the microhabitat temperature, demonstrating the importance of maintaining blood glucose levels during hibernation. Our transcriptomic data reveal that these changes in liver gene expression optimize energy allocation during hibernation, suggesting that liver tissue adaptively responds to the inherent stress of its function during hibernation. This study sheds light on the role of differential gene expression in promoting more efficient energy allocation during hibernation. It contributes to our understanding of how liver tissue adapts to the stressors associated with this state.


Assuntos
Quirópteros , Hibernação , Animais , Transcriptoma , Hibernação/genética , Temperatura , Quirópteros/genética , Regulação da Expressão Gênica , Fígado/metabolismo
9.
Nat Commun ; 15(1): 1401, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360878

RESUMO

Mammals exhibit different rates of cancer, with long-lived species generally showing greater resistance. Although bats have been suggested to be resistant to cancer due to their longevity, this has yet to be systematically examined. Here, we investigate cancer resistance across seven bat species by activating oncogenic genes in their primary cells. Both in vitro and in vivo experiments suggest that Myotis pilosus (MPI) is particularly resistant to cancer. The transcriptomic and functional analyses reveal that the downregulation of three genes (HIF1A, COPS5, and RPS3) largely contributes to cancer resistance in MPI. Further, we identify the loss of a potential enhancer containing the HIF1A binding site upstream of COPS5 in MPI, resulting in the downregulation of COPS5. These findings not only provide direct experimental evidence for cancer resistance in a bat species but also offer insights into the natural mechanisms of cancer resistance in mammals.


Assuntos
Quirópteros , Neoplasias , Animais , Humanos , Quirópteros/genética , Mamíferos/genética , Transcriptoma , Perfilação da Expressão Gênica , Neoplasias/genética
10.
Cell Genom ; 4(2): 100503, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38359787

RESUMO

Bats host a range of viruses, exhibiting a coevolution process with many virus genera and a special capacity for viral tolerance. Foley et al.1 performed phylogenomic analyses for 60 bat species, finding that swarming behavior might facilitate cross-species introgression and the spread of anti-virus immunity gene loci across species.


Assuntos
Quirópteros , Vírus , Animais , Filogenia , Quirópteros/genética , Vírus/genética
11.
PLoS One ; 19(2): e0296275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38381712

RESUMO

Corynorhinus mexicanus is an insectivorous bat endemic to Mexico that inhabits the high and humid regions of the Sierra Madre Oriental (SMO), the Trans-Mexican Volcanic Belt (TMVB), and the Sierra Madre Occidental (SMOC). A previous study suggested that C. mexicanus could be a cryptic species complex due to the genetic divergence observed between specimens from the TMVB and SMOC. The present study implemented phylogenetic, population genetics, and morphological analyses to evaluate the hypothesis that C. mexicanus is a species complex. The phylogenetic analysis indicated that C. mexicanus is a polyphyletic species composed of three indirectly related lineages. The estimated divergence times for the lineages suggest that they first originated during the Pliocene, while the second and third shared a common ancestor with C. townsendii 1.55 million years ago, and diverged 600,000 years ago during the Middle Pleistocene. The population genetics analysis reveals the SMO lineage of C. mexicanus is an isolated genetic group and highly diverged from the rest of lineages (SMOC and TMVB). The morphological analyses showed variation in the skull and mandible associated with the lineages and sex of the specimens, highlighting a difference in mandible shape between the specimens of the SMO and the rest of C. mexicanus. The results of this study suggest the presence of an undescribed species of the genus Corynorhinus.


Assuntos
Quirópteros , Animais , Filogenia , Quirópteros/genética , México , Genética Populacional
12.
Proc Biol Sci ; 291(2015): 20232196, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38290542

RESUMO

The order Chiroptera (bats) is the second largest group of mammals. One of the essential adaptations that have allowed bats to dominate the night skies is laryngeal echolocation, where bats emit ultrasonic pulses and listen to the returned echo to produce high-resolution 'images' of their surroundings. There are two possible scenarios for the evolutionary origin of laryngeal echolocation in bats: (1) a single origin in a common ancestor followed by the secondary loss in Pteropodidae, or (2) two convergent origins in Rhinolophoidea and Yangochiroptera. Although data from palaeontological, anatomical, developmental and genomic studies of auditory apparatuses exist, they remain inconclusive concerning the evolutionary origin of bat laryngeal echolocation. Here we compared musculoskeletal morphogenesis of the larynx in several chiropteran lineages and found distinct laryngeal modifications in two echolocating lineages, rhinolophoids and yangochiropterans. Our findings support the second scenario that rhinolophoids and yangochiropterans convergently evolved advanced laryngeal echolocation through anatomical modifications of the larynx for ultrasonic sound generation and refinement of the auditory apparatuses for more detailed sound perception.


Assuntos
Quirópteros , Ecolocação , Laringe , Animais , Evolução Biológica , Filogenia , Quirópteros/genética
13.
Sci Rep ; 14(1): 1847, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253562

RESUMO

Genetic tagging from scats is one of the minimally invasive sampling (MIS) monitoring approaches commonly used to guide management decisions and evaluate conservation efforts. Microsatellite markers have traditionally been used but are prone to genotyping errors. Here, we present a novel method for individual identification in the Threatened ghost bat Macroderma gigas using custom-designed Single Nucleotide Polymorphism (SNP) arrays on the MassARRAY system. We identified 611 informative SNPs from DArTseq data from which three SNP panels (44-50 SNPs per panel) were designed. We applied SNP genotyping and molecular sexing to 209 M. gigas scats collected from seven caves in the Pilbara, Western Australia, employing a two-step genotyping protocol and identifying unique genotypes using a custom-made R package, ScatMatch. Following data cleaning, the average amplification rate was 0.90 ± 0.01 and SNP genotyping errors were low (allelic dropout 0.003 ± 0.000) allowing clustering of scats based on one or fewer allelic mismatches. We identified 19 unique bats (9 confirmed/likely males and 10 confirmed/likely females) from a maternity and multiple transitory roosts, with two male bats detected using roosts, 9 km and 47 m apart. The accuracy of our SNP panels enabled a high level of confidence in the identification of individual bats. Targeted SNP genotyping is a valuable tool for monitoring and tracking of non-model species through a minimally invasive sampling approach.


Assuntos
Quirópteros , Humanos , Gravidez , Feminino , Masculino , Animais , Quirópteros/genética , Alelos , Análise por Conglomerados , Cultura , Membrana Eritrocítica
14.
Cell Genom ; 4(2): 100482, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38237599

RESUMO

The emergence of COVID-19 and severe acute respiratory syndrome (SARS) has prioritized understanding bats' viral tolerance. Myotis bats are exceptionally species rich and have evolved viral tolerance. They also exhibit swarming, a cryptic behavior where large, multi-species assemblages gather for mating, which has been hypothesized to promote interspecific hybridization. To resolve the coevolution of genome architecture and their unusual antiviral tolerance, we undertook a phylogenomic analysis of 60 Old World Myotis genomes. We demonstrate an extensive history of introgressive hybridization that has replaced the species phylogeny across 17%-93% of the genome except for pericentromeric regions of macrochromosomes. Introgression tracts were enriched on microchromosome regions containing key antiviral pathway genes overexpressed during viral challenge experiments. Together, these results suggest that the unusual Myotis karyotype may have evolved to selectively position immune-related genes in high recombining genomic regions prone to introgression of divergent alleles, including a diversity of interleukin loci responsible for the release of pro-inflammatory cytokines.


Assuntos
Quirópteros , Animais , Quirópteros/genética , Genoma , Genômica , Cariótipo , Antivirais
15.
J Hered ; 115(1): 139-148, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-37712349

RESUMO

The Yuma myotis bat (Myotis yumanensis) is a small vespertilionid bat and one of 52 species of new world Myotis bats in the subgenus Pizonyx. While M. yumanensis populations currently appear relatively stable, it is one of 12 bat species known or suspected to be susceptible to white-nose syndrome, the fungal disease causing declines in bat populations across North America. Only two of these 12 species have genome resources available, which limits the ability of resource managers to use genomic techniques to track the responses of bat populations to white-nose syndrome generally. Here we present the first de novo genome assembly for Yuma myotis, generated as a part of the California Conservation Genomics Project. The M. yumanensis genome was generated using a combination of PacBio HiFi long reads and Omni-C chromatin-proximity sequencing technology. This high-quality genome is one of the most complete bat assemblies available, with a contig N50 of 28.03 Mb, scaffold N50 of 99.14 Mb, and BUSCO completeness score of 93.7%. The Yuma myotis genome provides a high-quality resource that will aid in comparative genomic and evolutionary studies, as well as inform conservation management related to white-nose syndrome.


Assuntos
Quirópteros , Animais , Quirópteros/genética , América do Norte , Genoma , Genômica , Evolução Biológica
16.
J Hered ; 115(1): 149-154, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-37791665

RESUMO

The northern bat (Eptesicus nilssonii) is the most northern bat species in the world. Its distribution covers whole Eurasia, and the species is thus well adapted to different habitat types. However, recent population declines have been reported and rapid conservation efforts are needed. Here we present a high-quality de novo genome assembly of a female northern bat from Finland (BLF_Eptnil_asm_v1.0). The assembly was generated using a combination of Pacbio and Omni-C technologies. The primary assembly comprises 726 scaffolds spanning 2.0 Gb, represented by a scaffold N50 of 102 Mb, a contig N50 of 66.2 Mb, and a BUSCO completeness score of 93.73%. Annotation of the assembly identified 20,250 genes. This genome will be an important resource for the conservation and evolutionary genomic studies especially in understanding how rapid environmental changes affect northern species.


Assuntos
Quirópteros , Animais , Feminino , Quirópteros/genética , Genoma , Genômica , Evolução Biológica , Cromossomos
17.
Mol Ecol Resour ; 24(2): e13902, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38069533

RESUMO

The accessibility to CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein) genetic tools has given rise to applications beyond site-directed genome editing for the detection of DNA and RNA. These tools include precise diagnostic detection of human disease pathogens, such as SARS-CoV-2 and Zika virus. Despite the technology being rapid and cost-effective, the use of CRISPR/Cas tools in the surveillance of the causative agents of wildlife diseases has not been prominent. This study presents the development of a minimally invasive, field-applicable and user-friendly CRISPR/Cas-based biosensor for the detection of Pseudogymnoascus destructans (Pd), the causative fungal agent of white-nose syndrome (WNS), an infectious disease that has killed more than five million bats in North America since its discovery in 2006. The biosensor assay combines a recombinase polymerase amplification (RPA) step followed by CRISPR/Cas12a nuclease cleavage to detect Pd DNA from bat dermal swab and guano samples. The biosensor had similar detection results when compared to quantitative PCR in distinguishing Pd-positive versus negative field samples. Although bat dermal swabs could be analysed with the biosensor without nucleic acid extraction, DNA extraction was needed when screening guano samples to overcome inhibitors. This assay can be applied to help with more rapid delineation of Pd-positive sites in the field to inform management decisions. With further optimization, this technology has broad translation potential to wildlife disease-associated pathogen detection and monitoring applications.


Assuntos
Ascomicetos , Quirópteros , Infecção por Zika virus , Zika virus , Animais , Humanos , Quirópteros/genética , Sistemas CRISPR-Cas , Ascomicetos/genética , Animais Selvagens/genética , DNA , Zika virus/genética , Infecção por Zika virus/genética
18.
J Appl Microbiol ; 135(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38130237

RESUMO

AIMS: Despite metatranscriptomics becoming an emerging tool for pathogen surveillance, very little is known about the feasibility of this approach for understanding the fate of human-derived pathogens in drinking water sources. METHODS AND RESULTS: We conducted multiplexed microfluidic cards and metatranscriptomic sequencing of the drinking water source in a border city of North Korea in four seasons. Microfluidic card detected norovirus, hepatitis B virus (HBV), enterovirus, and Vibrio cholerae in the water. Phylogenetic analyses showed that environmental-derived sequences from norovirus GII.17, genotype C of HBV, and coxsackievirus A6 (CA6) were genetically related to the local clinical isolates. Meanwhile, metatranscriptomic assembly suggested that several bacterial pathogens, including Acinetobacter johnsonii and V. cholerae might be prevalent in the studied region. Metatranscriptomic analysis recovered 349 species-level groups with substantial viral diversity without detection of norovirus, HBV, and CA6. Seasonally distinct virus communities were also found. Specifically, 126, 73, 126, and 457 types of viruses were identified in spring, summer, autumn, and winter, respectively. The viromes were dominated by the Pisuviricota phylum, including members from Marnaviridae, Dicistroviridae, Luteoviridae, Potyviridae, Picornaviridae, Astroviridae, and Picobirnaviridae families. Further phylogenetic analyses of RNA (Ribonucleic Acid)-dependent RNA polymerase (RdRp) sequences showed a diverse set of picorna-like viruses associated with shellfish, of which several novel picorna-like viruses were also identified. Additionally, potential animal pathogens, including infectious bronchitis virus, Bat dicibavirus, Bat nodavirus, Bat picornavirus 2, infectious bursal disease virus, and Macrobrachium rosenbergii nodavirus were also identified. CONCLUSIONS: Our data illustrate the divergence between microfluidic cards and metatranscriptomics, highlighting that the combination of both methods facilitates the source tracking of human viruses in challenging settings without sufficient clinical surveillance.


Assuntos
Quirópteros , Água Potável , Norovirus , Picornaviridae , Vírus de RNA , Vírus , Animais , Humanos , Estações do Ano , Quirópteros/genética , Filogenia , Microfluídica , Vírus de RNA/genética , Norovirus/genética , RNA , RNA Viral/genética
20.
Sci Data ; 10(1): 902, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102156

RESUMO

Stoliczka's Asian trident bat (Aselliscus stoliczkanus) is a small-bodied species and very sensitive to climate change. Here, we presented a chromosome-level genome assembly of A. stoliczkanus by combining Illumina sequencing, Nanopore sequencing and high-throughput chromatin conformation capture (Hi-C) sequencing technology. The genome assembly was 2.18 Gb in size with 98.26% of the genome sequences anchored onto 14 autosomes and two sex chromosomes (X and Y). The quality of the genome assembly is very high with a contig and scaffold N50 of 72.98 and 162 Mb, respectively, Benchmarking Universal Single-Copy Orthologs (BUSCO) score of 96.6%, and the consensus quality value (QV) of 47.44. A total of 20,567 genes were predicted and 98.8% of these genes were functionally annotated. Syntenic blocks between A. stoliczkanus and Homo sapiens, together with previous comparative cytogenetic studies, provide valuable foundations for further comparative genomic and cytogenetic studies in mammals. The reference-quality genome of A. stoliczkanus contributes an important resource for conservative genomics and landscape genomics in predicting adaptation and vulnerability to climate change.


Assuntos
Quirópteros , Genoma , Animais , Quirópteros/genética , Cromossomos/genética , Genômica , Anotação de Sequência Molecular , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...